Léo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

Universal exploration dynamics of

 random walksLéo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

- visited sites.
\square : current position.

Universal exploration dynamics of

 random walksLéo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

- visited sites.
\square : current position.

Universal exploration dynamics of

 random walksLéo Régnier

M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

- visited sites.
\square : current position.

Universal exploration

 dynamics of random walksLéo Régnier

M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

- visited sites.
\square : current position.

Universal exploration dynamics of

 random walksLéo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

\square : visited sites.
| : boundary between visited/univisited sites.
\square :current position, nth visited site.

Universal exploration dynamics of

 random walksLéo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

\square : visited sites.
| : boundary between visited/univisited sites.
: current position, nth visited site.
Exploration: usually quantified by the number of distinct sites visited at time $\mathrm{t}, \mathrm{N}(\mathrm{t})$

Universal exploration dynamics of

 random walksLéo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

\square : visited sites.
| : boundary between visited/univisited sites.
: current position, nth visited site.
Exploration: usually quantified by the number of distinct sites visited at time $\mathrm{t}, \mathrm{N}(\mathrm{t})$

Average, variance and distribution

Universal exploration dynamics of

 random walksLéo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

\square : visited sites.
| : boundary between visited/univisited sites.
: current position, nth visited site.
Exploration: usually quantified by the number of distinct sites visited at time $\mathrm{t}, \mathrm{N}(\mathrm{t})$

Average, variance and distribution
Foraging: food collected

Universal exploration dynamics of

 random walksLéo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

\square : visited sites.
| : boundary between visited/univisited sites.
: current position, nth visited site.
Exploration: usually quantified by the number of distinct sites visited at time $\mathrm{t}, \mathrm{N}(\mathrm{t})$

Average, variance and distribution
Foraging: food collected
Trapping problem: trap concentration p , Survival probability $=\left\langle(1-p)^{\mathrm{N}(t)}\right\rangle$

Universal exploration random walks

Léo Régnier M. Dolgushev
S. Redner
O. Bénichou

dynamics of

Nat. Commun. 14, 618, (2023)

Universal exploration

dynamics of

 random walksLéo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

Universal exploration dynamics of

 random walksLéo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

Time elapsed between finding of new resources?

Universal exploration

dynamics of

 random walksLéo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

Time elapsed between finding of new resources?

Universal exploration dynamics of

 random walksLéo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

A random walker (RW) has visited n distinct sites: How long does it take to visit a new site?

\square : visited sites.
| : boundary between visited/univisited sites.
\square : nth visited site.

Universal exploration dynamics of

 random walksLéo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

A random walker (RW) has visited n distinct sites: How long does it take to visit a new site?

\square : visited sites.
| : boundary between visited/univisited sites.
\square : nth visited site. $\square:(n+1)$ st visited site.
$\tau_{n}=$ time elapsed between the visit of the nth and the $(n+1)$ st new sites [distribution F_{n}].
(here, $n=30$ and $\tau_{n}=5$)

Universal exploration dynamics of

 random walksLéo Régnier
M. Dolgushev
S. Redner
O. Bénichou

Nat. Commun. 14, 618, (2023)

A random walker (RW) has visited n distinct sites: How long does it take to visit a new site?

\square : visited sites.
| : boundary between visited/univisited sites.
\square : nth visited site. $\square:(n+1)$ st visited site.
$\tau_{n}=$ time elapsed between the visit of the nth and the $(n+1)$ st new sites [distribution F_{n}].
(here, $n=30$ and $\tau_{n}=5$)

Objective: F_{n} characterization ? n dependence?

The 1d case

$F_{n}(\tau)$ is the first exit time probability starting one lattice step from the boundary

$$
F_{n}(\tau) \sim \frac{2 \pi^{2}}{n^{3}} \sum_{k=0}^{\infty}(2 k+1)^{2} \exp \left[-\pi^{2}(2 k+1)^{2} \tau / 2 n^{2}\right]
$$

$F_{n}(\tau)$ is the first exit time probability starting one lattice step from the boundary

$$
F_{n}(\tau) \sim \frac{2 \pi^{2}}{n^{3}} \sum_{k=0}^{\infty}(2 k+1)^{2} \exp \left[-\pi^{2}(2 k+1)^{2} \tau / 2 n^{2}\right]
$$

Properties:

(i) Depends on n, aging

$F_{n}(\tau)$ is the first exit time probability starting one lattice step from the boundary

$$
F_{n}(\tau) \sim \frac{2 \pi^{2}}{n^{3}} \sum_{k=0}^{\infty}(2 k+1)^{2} \exp \left[-\pi^{2}(2 k+1)^{2} \tau / 2 n^{2}\right]
$$

Properties:

(i) Depends on n, aging
(ii) Algebraic at small times, $\tau^{-3 / 2}$

$F_{n}(\tau)$ is the first exit time probability starting one lattice step from the boundary

$$
F_{n}(\tau) \sim \frac{2 \pi^{2}}{n^{3}} \sum_{k=0}^{\infty}(2 k+1)^{2} \exp \left[-\pi^{2}(2 k+1)^{2} \tau / 2 n^{2}\right]
$$

Properties:

(i) Depends on n, aging
(ii) Algebraic at small times, $\tau^{-3 / 2}$
(iii) Exponential decay at large times

$F_{n}(\tau)$ is the first exit time probability starting one lattice step from the boundary

$$
F_{n}(\tau) \sim \frac{2 \pi^{2}}{n^{3}} \sum_{k=0}^{\infty}(2 k+1)^{2} \exp \left[-\pi^{2}(2 k+1)^{2} \tau / 2 n^{2}\right]
$$

Properties:

(i) Depends on n, aging
(ii) Algebraic at small times, $\tau^{-3 / 2}$
(iii) Exponential decay at large times
(iv) Scaling form, $F_{n}(\tau)=n^{-3} \psi\left(\tau / n^{2}\right)$

$F_{n}(\tau)$ is the first exit time probability starting one lattice step from the boundary

$$
F_{n}(\tau) \sim \frac{2 \pi^{2}}{n^{3}} \sum_{k=0}^{\infty}(2 k+1)^{2} \exp \left[-\pi^{2}(2 k+1)^{2} \tau / 2 n^{2}\right]
$$

Properties:

(i) Depends on n, aging
(ii) Algebraic at small times, $\tau^{-3 / 2}$
(iii) Exponential decay at large times
(iv) Scaling form, $F_{n}(\tau)=n^{-3} \psi\left(\tau / n^{2}\right)$

Question:

What about more general RWs in more complex geometries?

Defining general RWs

We consider symmetric, Markovian RWs in discrete time + scale-invariance

Defining general RWs

We consider symmetric, Markovian RWs in discrete time + scale-invariance

Number of sites within a circle of radius r ($\mathrm{df}_{\mathrm{f}}=$ fractal dimension, d for lattice)
$\propto r^{d_{\mathrm{f}}}$

Defining general RWs
We consider symmetric, Markovian RWs in discrete time + scale-invariance

Number of sites within a circle of radius r ($\mathrm{d}_{\mathrm{f}}=$ fractal dimension, d for lattice)
$\propto r^{d_{f}}$
Exit time of a circle of radius r ($\mathrm{d}_{\mathrm{w}}=$ walk dimension, 2 for diffusion)

Defining general RWs

We consider symmetric, Markovian RWs in discrete time + scale-invariance

Number of sites within a circle of radius r ($\mathrm{df}_{\mathrm{f}}=$ fractal dimension, d for lattice)
$\propto r^{d_{f}}$
Exit time of a circle of radius r $\propto r^{d_{\mathrm{w}}}$ ($\mathrm{d}_{\mathrm{w}}=$ walk dimension, 2 for diffusion)

Recurrent: <1
$\mu \equiv \frac{d_{\mathrm{f}}}{d_{\mathrm{w}}} \quad$ Marginal: $=1$
Transient: >1

Mapping to a trapping problem

METHOD:

Mapping with a trapping problem where traps=non-visited sites.

Mapping to a trapping problem

METHOD:

Mapping with a trapping problem where traps=non-visited sites.
$Q_{n}(r)=$ Distribution of the radius of the largest spherical region free of traps (for n visited sites)

Mapping to a trapping problem

METHOD:

Mapping with a trapping problem where traps=non-visited sites.
$Q_{n}(r)=$ Distribution of the radius of the largest spherical region free of traps (for n visited sites)

We obtain via scaling arguments,

$$
Q_{n}(r) \approx \rho_{n}^{-1} \exp \left[-a\left(r / \rho_{n}\right)^{d_{\mathrm{f}}}\right]
$$

ρ_{n} provides the typical scale of the largest fully visited region,

Mapping to a trapping problem

METHOD:

Mapping with a trapping problem where traps=non-visited sites.
$Q_{n}(r)=$ Distribution of the radius of the largest spherical region free of traps (for n visited sites)

We obtain via scaling arguments,

$$
Q_{n}(r) \approx \rho_{n}^{-1} \exp \left[-a\left(r / \rho_{n}\right)^{d_{\mathrm{f}}}\right]
$$

ρ_{n} provides the typical scale of the largest fully visited region,

Different from classical trapping problem:

- Aging
- Correlations

Mapping to a trapping problem

METHOD:

Mapping with a trapping problem where traps=non-visited sites.
$Q_{n}(r)=$ Distribution of the radius of the largest spherical region free of traps (for n visited sites)

We obtain via scaling arguments,

$$
Q_{n}(r) \approx \rho_{n}^{-1} \exp \left[-a\left(r / \rho_{n}\right)^{d_{\mathrm{f}}}\right]
$$

ρ_{n} provides the typical scale of the largest fully visited region,

Different from classical trapping problem:

- Aging
- Correlations

$$
\rho_{n} \propto\left\{\begin{aligned}
n^{1 / d_{\mathrm{f}}}, & \text { if } \mu<1 \\
\sqrt{n^{1 / d_{\mathrm{f}}}}, & \text { if } \mu=1 \\
1, & \text { if } \mu>1
\end{aligned}\right.
$$

Results:

For general scale-invariant Markovian process:

$$
\mu \equiv \frac{d_{\mathrm{f}}}{d_{\mathrm{w}}}
$$

For general scale-invariant Markovian process:

$$
\mu \equiv \frac{d_{\mathrm{f}}}{d_{\mathrm{w}}}
$$

	t_{n}	T_{n}	$1 \ll \tau \ll t_{n}$	$t_{n} \ll \tau \ll T_{n}$	$T_{n} \ll \tau$
$\mu<1$ [recurrent]	$n^{1 / \mu}$	$n^{1 / \mu}$			
			$\tau^{-(1+\mu)}$		

Algebraic

Exponential

Scale invariance

Results: transient RWs

For general scale-invariant Markovian process:

$$
\mu \equiv \frac{d_{\mathrm{f}}}{d_{\mathrm{w}}}
$$

	t_{n}	T_{n}	$1 \ll \tau \ll t_{n}$	$t_{n} \ll \tau \ll T_{n}$	$T_{n} \ll \tau$
$\mu>1$ [transient]	1	$n^{(\mu+1) / \mu}$		$\exp \left[-\operatorname{const}\left(\tau / t_{n}\right)^{\mu /(1+\mu)}\right]$	$\exp \left[-\right.$ const $\left.\tau / n^{1 / \mu}\right]$

Stretched exponential
Exponential

Results: marginal RWs

For general scale-invariant Markovian process:

$$
\mu \equiv \frac{d_{\mathrm{f}}}{d_{\mathrm{w}}}
$$

Algebraic

Stretched exponential

Results:

For general scale-invariant Markovian process:

$$
\mu \equiv \frac{d_{\mathrm{f}}}{d_{\mathrm{w}}}
$$

	t_{n}	T_{n}	$1 \ll \tau \ll t_{n}$	$t_{n} \ll \tau \ll T_{n}$	$T_{n} \ll \tau$
$\mu<1$ [recurrent]	$n^{1 / \mu}$	$n^{1 / \mu}$			
$\mu=1$ [marginal]	\sqrt{n}	$n^{3 / 2}$	$\tau^{-(1+\mu)}$		
$\mu>1$ [transient]	1	$n^{(\mu+1) / \mu}$		$\exp \left[-\operatorname{const}\left(\tau / t_{n}\right)^{\mu /(1+\mu)}\right]$	$\exp \left[-\operatorname{const} \tau / n^{1 / \mu}\right]$

Distribution F_{n} of the inter visit time: Recurrent

1d Lévy flight $p(\ell) \propto \ell^{-1-\alpha}$

$$
\mu=1 / \alpha<1
$$

[superdiffusive, long jumps]

Sierpinski gasket

$$
\mu=\ln 3 / \ln 5
$$

[subdiffusive, fractal]

Percolation cluster

$$
\mu \approx 0.659
$$

[subdiffusive, disordered]

$$
X=\tau / t_{n}, \quad Y=F_{n}(\tau) t_{n}^{\mu+1}
$$

Algebraic

Exponential

Scale invariance

Distribution F_{n} of the inter visit time: Transient

2d Lévy flight $p(\ell) \propto \ell^{-1-\alpha} \quad$ 3d persistent RW

$$
\mu=2 / \alpha>1
$$

$$
\mu=3 / 2
$$

$$
X=\tau
$$

$$
X=\tau
$$

$$
20
$$

$$
2 \text { (0, } \frac{10^{-2}}{x}
$$

3d simple RW

$$
\mu=3 / 2
$$

$$
X=\tau / T_{n}
$$

路

$$
Y=-\ln \left[F_{n}(\tau)\right] /\left(\tau / t_{n}\right)^{\mu /(1+\mu)}
$$

Stretched exponential
Exponential

Distribution F_{n} of the inter visit time: Marginal

$$
\begin{array}{l|l}
X=\tau / t_{n}, Y=F_{n}(\tau) t_{n}^{\mu+1} & Y=-\ln \left[F_{n}(\tau)\right] /\left(\tau / t_{n}\right)^{\mu /(1+\mu)}
\end{array}
$$

Algebraic

Stretched exponential
Exponential

Conclusion: Universality

For general scale-invariant Markovian process:

	t_{n}	T_{n}	$1 \ll \tau \ll t_{n}$	$t_{n} \ll \tau \ll T_{n}$	$T_{n} \ll \tau$
$\mu<1$ [recurrent]	$n^{1 / \mu}$	$n^{1 / \mu}$			
$\mu=1$ [marginal]	\sqrt{n}	$n^{3 / 2}$	$\tau^{-(1+\mu)}$		
$\mu>1$ [transient]	1	$n^{(\mu+1) / \mu}$		$\exp \left[-\operatorname{const}\left(\tau / t_{n}\right)^{\mu /(1+\mu)}\right]$	$\exp \left[-\operatorname{const} \tau / n^{1 / \mu}\right]$

Conclusion: Universality

For general scale-invariant Markovian process:

	t_{n}	T_{n}	$1 \ll \tau \ll t_{n}$	$t_{n} \ll \tau \ll T_{n}$	$T_{n} \ll \tau$
$\mu<1$ [recurrent]	$n^{1 / \mu}$	$n^{1 / \mu}$			
$\mu=1$ [marginal]	\sqrt{n}	$n^{3 / 2}$	$\tau^{-(1+\mu)}$		
$\mu>1$ [transient]	1	$n^{(\mu+1) / \mu}$		$\exp \left[-\operatorname{const}\left(\tau / t_{n}\right)^{\mu /(1+\mu)}\right]$	$\exp \left[-\operatorname{const} \tau / n^{1 / \mu}\right]$

Complete characterisation of the time elapsed between visits for random walks:

Conclusion: Universality

For general scale-invariant Markovian process:

	t_{n}	T_{n}	$1 \ll \tau \ll t_{n}$	$t_{n} \ll \tau \ll T_{n}$	$T_{n} \ll \tau$
$\mu<1$ [recurrent]	$n^{1 / \mu}$	$n^{1 / \mu}$			
$\mu=1$ [marginal]	\sqrt{n}	$n^{3 / 2}$	$\tau^{-(1+\mu)}$		
$\mu>1$ [transient]	1	$n^{(\mu+1) / \mu}$		$\exp \left[-\operatorname{const}\left(\tau / t_{n}\right)^{\mu /(1+\mu)}\right]$	$\exp \left[-\operatorname{const} \tau / n^{1 / \mu}\right]$

Complete characterisation of the time elapsed between visits for random walks:

- In any dimension (3d, ...)

Conclusion: Universality

For general scale-invariant Markovian process:

	t_{n}	T_{n}	$1 \ll \tau \ll t_{n}$	$t_{n} \ll \tau \ll T_{n}$	$T_{n} \ll \tau$
$\mu<1$ [recurrent]	$n^{1 / \mu}$	$n^{1 / \mu}$			
$\mu=1$ [marginal]	\sqrt{n}	$n^{3 / 2}$	$\tau^{-(1+\mu)}$		
$\mu>1$ [transient]	1	$n^{(\mu+1) / \mu}$		$\exp \left[-\operatorname{const}\left(\tau / t_{n}\right)^{\mu /(1+\mu)}\right]$	$\exp \left[-\operatorname{const} \tau / n^{1 / \mu}\right]$

Complete characterisation of the time elapsed between visits for random walks:

- In any dimension (3d, ...)
- on disordered media (Percolation clusters, ...)

Conclusion: Universality

For general scale-invariant Markovian process:

	t_{n}	T_{n}	$1 \ll \tau \ll t_{n}$	$t_{n} \ll \tau \ll T_{n}$	$T_{n} \ll \tau$
$\mu<1$ [recurrent]	$n^{1 / \mu}$	$n^{1 / \mu}$			
$\mu=1$ [marginal]	\sqrt{n}	$n^{3 / 2}$	$\tau^{-(1+\mu)}$		
$\mu>1$ [transient]	1	$n^{(\mu+1) / \mu}$		$\exp \left[-\operatorname{const}\left(\tau / t_{n}\right)^{\mu /(1+\mu)}\right]$	$\exp \left[-\operatorname{const} \tau / n^{1 / \mu}\right]$

Complete characterisation of the time elapsed between visits for random walks:

- In any dimension (3d, ...)
- on disordered media (Percolation clusters, ...)
- on fractals (Sierpinski lattice, ...)

Conclusion: Universality

For general scale-invariant Markovian process:

	t_{n}	T_{n}	$1 \ll \tau \ll t_{n}$	$t_{n} \ll \tau \ll T_{n}$	$T_{n} \ll \tau$
$\mu<1$ [recurrent]	$n^{1 / \mu}$	$n^{1 / \mu}$			
$\mu=1$ [marginal]	\sqrt{n}	$n^{3 / 2}$	$\tau^{-(1+\mu)}$		
$\mu>1$ [transient]	1	$n^{(\mu+1) / \mu}$		$\exp \left[-\operatorname{const}\left(\tau / t_{n}\right)^{\mu /(1+\mu)}\right]$	$\exp \left[-\operatorname{const} \tau / n^{1 / \mu}\right]$

Complete characterisation of the time elapsed between visits for random walks:

- In any dimension (3d, ...)
- on disordered media (Percolation clusters, ...)
- on fractals (Sierpinski lattice, ...)
- with anomalous diffusion (Lévy flights, ...)

Conclusion: Universality

For general scale-invariant Markovian process:

	t_{n}	T_{n}	$1 \ll \tau \ll t_{n}$	$t_{n} \ll \tau \ll T_{n}$	$T_{n} \ll \tau$
$\mu<1$ [recurrent]	$n^{1 / \mu}$	$n^{1 / \mu}$			
$\mu=1$ [marginal]	\sqrt{n}	$n^{3 / 2}$	$\tau^{-(1+\mu)}$		
$\mu>1$ [transient]	1	$n^{(\mu+1) / \mu}$		$\exp \left[-\operatorname{const}\left(\tau / t_{n}\right)^{\mu /(1+\mu)}\right]$	$\exp \left[-\operatorname{const} \tau / n^{1 / \mu}\right]$

Complete characterisation of the time elapsed between visits for random walks:

- In any dimension (3d, ...)
- on disordered media (Percolation clusters, ...)
- on fractals (Sierpinski lattice, ...)
- with anomalous diffusion (Lévy flights, ...)

Openings: Universality?

$$
X=\tau / t_{n}, Y=F_{n}(\tau) t_{n}^{\mu+1}
$$

$$
X=\tau / t_{n}, \quad Y=F_{n}(\tau) t_{n}^{\mu+1}
$$

Non-Markovian recurrent RW BUT still:
Algebraic

Exponential

Scale invariance

Openings: Universality?

1d fBm subdiffusive

1d fBm superdiffusive

1d True Self-Avoiding RW

$$
X=\tau / t_{n}, Y=F_{n}(\tau) t_{n}^{\mu+1}
$$

Non-Markovian recurrent RW BUT still:
Algebraic
Exponential
Scale invariance
Record ages of non Markovian RWs:

Distribution F_{n} of the time between visits: early times

Distribution F_{n} of the time between visits: early times

METHOD: $\quad \tau \ll t_{n}=\rho_{n}^{d_{\mathrm{w}}}$

The RW sees an infinite visited domain, $F_{n} \approx F_{\infty}$
The surface of the visited domain is fractal of dimension

$$
d_{T}=2 d_{\mathrm{f}}-d_{\mathrm{w}}
$$

Distribution F_{n} of the time between visits: early times

METHOD: $\quad \tau \ll t_{n}=\rho_{n}^{d_{\mathrm{w}}}$

The RW sees an infinite visited domain, $F_{n} \approx F_{\infty}$
The surface of the visited domain is fractal of dimension

$$
d_{T}=2 d_{\mathrm{f}}-d_{\mathrm{w}}
$$

Starting from the last visited site, the probability $P_{\text {trap }}(\mathrm{t})$ to be at a trap is

Distribution F_{n} of the time between visits: early times

METHOD: $\quad \tau \ll t_{n}=\rho_{n}^{d_{\mathrm{w}}}$

The RW sees an infinite visited domain, $F_{n} \approx F_{\infty}$
The surface of the visited domain is fractal of dimension

$$
d_{T}=2 d_{\mathrm{f}}-d_{\mathrm{w}}
$$

Starting from the last visited site, the probability $P_{\text {trap }}(\mathrm{t})$ to be at a trap is

$$
P_{\text {trap }}(t) \propto \frac{\text { Number of traps }}{\text { Number of sites }} \propto \frac{r(t)^{d_{\mathrm{T}}}}{r(t)^{d_{\mathrm{f}}}} \propto t^{\mu-1}
$$

Distribution F_{n} of the time between visits: early times

METHOD: $\quad \tau \ll t_{n}=\rho_{n}^{d_{\mathrm{w}}}$

The RW sees an infinite visited domain, $F_{n} \approx F_{\infty}$
The surface of the visited domain is fractal of dimension

$$
d_{T}=2 d_{\mathrm{f}}-d_{\mathrm{W}}
$$

Starting from the last visited site, the probability $P_{\text {trap }}(\mathrm{t})$ to be at a trap is

$$
P_{\text {trap }}(t) \propto \frac{\text { Number of traps }}{\text { Number of sites }} \propto \frac{r(t)^{d_{\mathrm{T}}}}{r(t)^{d_{\mathrm{f}}}} \propto t^{\mu-1}
$$

There is a renewal equation between the probability $P_{\text {trap }}$ to be at a trap and the probability to first arrive at a trap F_{∞},

Distribution F_{n} of the time between visits: early times

METHOD: $\quad \tau \ll t_{n}=\rho_{n}^{d_{\mathrm{w}}}$

The RW sees an infinite visited domain, $F_{n} \approx F_{\infty}$
The surface of the visited domain is fractal of dimension

$$
d_{T}=2 d_{\mathrm{f}}-d_{\mathrm{w}}
$$

$$
P_{\text {trap }}(t) \propto \frac{\text { Number of traps }}{\text { Number of sites }} \propto \frac{r(t)^{d_{\mathrm{T}}}}{r(t)^{d_{\mathrm{f}}}} \propto t^{\mu-1}
$$

There is a renewal equation between the probability $P_{\text {trap }}$ to be at a trap and the probability to first arrive at a trap F_{∞},
$P_{\text {trap }}(t)=\delta(t)+\int_{0}^{t} F_{\infty}(\tau) P_{\text {trap }}(t-\tau) d \tau$

Distribution F_{n} of the time between visits: early times

$$
\text { METHOD: } \quad \tau \ll t_{n}=\rho_{n}^{d_{\mathrm{w}}}
$$

The RW sees an infinite visited domain, $F_{n} \approx F_{\infty}$
The surface of the visited domain is fractal of dimension

$$
d_{T}=2 d_{\mathrm{f}}-d_{\mathrm{w}}
$$

$$
P_{\text {trap }}(t) \propto \frac{\text { Number of traps }}{\text { Number of sites }} \propto \frac{r(t)^{d_{\mathrm{T}}}}{r(t)^{d_{\mathrm{f}}}} \propto t^{\mu-1}
$$

There is a renewal equation between the probability $P_{\text {trap }}$ to be at a trap and the probability to first arrive at a trap F_{∞},
$P_{\text {trap }}(t)=\delta(t)+\int_{0}^{t} F_{\infty}(\tau) P_{\text {trap }}(t-\tau) d \tau$
Start close to trap

Distribution F_{n} of the time between visits: early times

$$
\text { METHOD: } \quad \tau \ll t_{n}=\rho_{n}^{d_{\mathrm{w}}}
$$

The RW sees an infinite visited domain, $F_{n} \approx F_{\infty}$
The surface of the visited domain is fractal of dimension

$$
d_{T}=2 d_{\mathrm{f}}-d_{\mathrm{w}}
$$

$$
P_{\text {trap }}(t) \propto \frac{\text { Number of traps }}{\text { Number of sites }} \propto \frac{r(t)^{d_{\mathrm{T}}}}{r(t)^{d_{\mathrm{f}}}} \propto t^{\mu-1}
$$

There is a renewal equation between the probability $P_{\text {trap }}$ to be at a trap and the probability to first arrive at a trap F_{∞},
$P_{\text {trap }}(t)=\delta(t)+\int_{0}^{t} F_{\infty}(\tau) P_{\text {trap }}(t-\tau) d \tau$
Start close to trap
First arrive at trap

Distribution F_{n} of the time between visits: early times

$$
\text { METHOD: } \quad \tau \ll t_{n}=\rho_{n}^{d_{\mathrm{w}}}
$$

The RW sees an infinite visited domain, $F_{n} \approx F_{\infty}$
The surface of the visited domain is fractal of dimension

$$
d_{T}=2 d_{\mathrm{f}}-d_{\mathrm{w}}
$$

$$
P_{\text {trap }}(t) \propto \frac{\text { Number of traps }}{\text { Number of sites }} \propto \frac{r(t)^{d_{\mathrm{T}}}}{r(t)^{d_{\mathrm{f}}}} \propto t^{\mu-1}
$$

There is a renewal equation between the probability $P_{\text {trap }}$ to be at a trap and the probability to first arrive at a trap F_{∞},
$P_{\text {trap }}(t)=\delta(t)+\int_{0}^{t} F_{\infty}(\tau) P_{\text {trap }}(t-\tau) d \tau$
Start close to trap
First arrive at trap
Start at new trap

Distribution F_{n} of the time between visits: early times

$$
\text { METHOD: } \quad \tau \ll t_{n}=\rho_{n}^{d_{\mathrm{w}}}
$$

The RW sees an infinite visited domain, $F_{n} \approx F_{\infty}$
The surface of the visited domain is fractal of dimension

$$
d_{T}=2 d_{f}-d_{W}
$$

$$
P_{\text {trap }}(t) \propto \frac{\text { Number of traps }}{\text { Number of sites }} \propto \frac{r(t)^{d_{\mathrm{T}}}}{r(t)^{d_{\mathrm{f}}}} \propto t^{\mu-1}
$$

There is a renewal equation between the probability $P_{\text {trap }}$ to be at a trap and the probability to first arrive at a trap F_{∞},
$P_{\text {trap }}(t)=\delta(t)+\int_{0}^{t} F_{\infty}(\tau) P_{\text {trap }}(t-\tau) d \tau$
Start close to trap
First arrive at trap
Start at new trap

Algebraic decay, $\quad F_{\infty}(\tau) \propto \tau^{-(1+\mu)}$

Distribution F_{n} of the time between visits: intermediate/long times

METHOD:
Lower bound for survival probability $S_{n}(\tau)$ [same as classical trapping problem]
Using the result on $Q_{n}(r)$ which gives the controlling regions radius at large times,

Distribution F_{n} of the time between visits: intermediate/long times

\[

\]

Distribution F_{n} of the time between visits: intermediate/long times

METHOD:

Lower bound for survival probability $\mathrm{S}_{\mathrm{n}}(\tau)$ [same as classical trapping problem]
Using the result on $Q_{n}(r)$ which gives the controlling regions radius at large times,
$S_{n}(\tau) \geq \underbrace{q_{n}} \times \int_{0}^{n^{1 / d_{\mathrm{f}}}} \frac{1}{\rho_{n}} \exp \left[-a\left(r / \rho_{n}\right)^{d_{\mathrm{f}}}\right] \times \exp \left[-b \tau / r d_{\mathrm{w}}\right] d r$ $\mathbb{P}\left(\right.$ RW survived up to $\left.\rho_{n}^{d_{\mathrm{w}}}\right)$

Distribution F_{n} of the time between visits: intermediate/long times

METHOD:

Lower bound for survival probability $\mathrm{S}_{\mathrm{n}}(\tau)$ [same as classical trapping problem]
Using the result on $Q_{n}(r)$ which gives the controlling regions radius at large times,

$$
S_{n}(\tau) \geq \underbrace{q_{n} \times \int_{0}^{n^{1 / d_{\mathrm{f}}}} \frac{Q_{n}(r)}{\frac{1}{\rho_{n}} \exp \left[-a\left(r / \rho_{n}\right)^{d_{\mathrm{f}}}\right]} \times \exp \left[-b \tau / r^{d_{\mathrm{w}}}\right] d r}
$$ $\mathbb{P}\left(\right.$ RW survived up to $\left.\rho_{n}^{d_{\mathrm{w}}}\right)$

Distribution F_{n} of the time between visits: intermediate/long times

METHOD:

Lower bound for survival probability $\mathrm{S}_{\mathrm{n}}(\tau)$ [same as classical trapping problem]
Using the result on $Q_{n}(r)$ which gives the controlling regions radius at large times,

$$
\begin{aligned}
& Q_{n}(r) \\
& S_{n}(\tau) \geq \underbrace{q_{n}} \times \int_{0}^{n^{1 / d_{\mathrm{f}}}} \frac{1}{\rho_{n}} \exp \left[-a\left(r / \rho_{n}\right)^{d_{\mathrm{f}}}\right] \times \exp \left[-b \tau / r^{d_{\mathrm{w}}}\right] d r \\
& \mathbb{P}\left(\mathrm{RW} \text { survived up to } \rho_{n}^{d_{\mathrm{w}}}\right)
\end{aligned}
$$

Distribution F_{n} of the time between visits: intermediate/long times

METHOD: $\quad \tau>t_{n}$

Lower bound for survival probability $\mathrm{S}_{\mathrm{n}}(\tau)$ [same as classical trapping problem]
Using the result on $Q_{n}(r)$ which gives the controlling regions radius at large times,

$$
Q_{n}(r)
$$

$S_{n}(\tau) \geq \underbrace{q_{n}} \times \int_{0}^{n^{1 / d_{\mathrm{f}}}} \overbrace{\frac{1}{\rho_{n}} \exp \left[-a\left(r / \rho_{n}\right)^{d_{\mathrm{f}}}\right]}^{\times \exp \left[-b \tau / r^{d_{\mathrm{w}}}\right]} d r$
$\mathbb{P}\left(\right.$ RW survived up to $\left.\rho_{n}^{d_{\mathrm{w}}}\right)$
$\mathbb{P}(\mathrm{RW}$ still in the largest ball)

RESULTS:

$\mathrm{S}_{\mathrm{n}}(\tau)$ has same time dependence as its lower bound

$$
F_{n}(\tau)=-\frac{d S_{n}}{d \tau} \propto \exp \left[-\operatorname{const}\left(\tau / t_{n}\right)^{\mu /(1+\mu)}\right]
$$

Distribution F_{n} of the time between visits: intermediate/long times

METHOD: $\quad \tau>t_{n}$

Lower bound for survival probability $\mathrm{S}_{\mathrm{n}}(\tau)$ [same as classical trapping problem]
Using the result on $Q_{n}(r)$ which gives the controlling regions radius at large times,
$Q_{n}(r)$
$S_{n}(\tau) \geq \underbrace{q_{n} \times \int_{0}^{n^{1 / d_{\mathrm{f}}}} \overparen{\frac{1}{\rho_{n}} \exp \left[-a\left(r / \rho_{n}\right)^{d_{\mathrm{f}}}\right]} \times \exp \left[-b \tau / r^{d_{\mathrm{w}}}\right]} d r$
$\mathbb{P}\left(\mathrm{RW}\right.$ survived up to $\left.\rho_{n}^{d_{\mathrm{w}}}\right)$
$\mathbb{P}(\mathrm{RW}$ still in the largest ball)

RESULTS:

$S_{n}(\tau)$ has same time dependence as its lower bound

$$
F_{n}(\tau)=-\frac{d S_{n}}{d \tau} \propto \exp \left[-\operatorname{const}\left(\tau / t_{n}\right)^{\mu /(1+\mu)}\right]
$$

+at long time when statistics is dominated by the upper bound of the integral,

$$
F_{n}(\tau) \propto \exp \left[- \text { const } \tau / n^{1 / \mu}\right] \quad \tau \gg T_{n}
$$

