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      Trapping problem: trap concentration p,
Survival probability =<(1-p)N(t) > 
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Question:

What about more general RWs in more complex geometries?
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Defining general RWs

We consider symmetric, Markovian RWs in discrete time + scale-invariance

                     Recurrent: <1 

                 Marginal: =1

                  Transient: >1
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Algebraic
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Scale invariance

Record ages of non Markovian RWs:
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RESULTS: 

Sn(τ) has same time dependence as its lower bound

+at long time when statistics is dominated by the upper bound of the integral,
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