

Universal exploration dynamics of random walks

<u>Léo Régnier</u> M. Dolgushev S. Redner O. Bénichou

Universal exploration dynamics of random walks

<u>Léo Régnier</u> M. Dolgushev S. Redner O. Bénichou

A simple 2d random walker has just visited *n* sites: How long does it take to visit a new site?

: visited sites.

: boundary between visited/univisited sites.

: *n*th visited site.

Universal exploration dynamics of random walks

<u>Léo Régnier</u> M. Dolgushev S. Redner O. Bénichou

A simple 2d random walker has just visited *n* sites: How long does it take to visit a new site?

: visited sites.

: boundary between visited/univisited sites.

: *n*th visited site.

: *(n+1)*st visited site.

 T_n = time elapsed between the visit of the *n*th and the *(n+1)*st new sites [distribution F_n].

(here, \it{n} =30 and $T_{\it{n}}$ =5)

Distribution F_n of the time between visits

Early-time algebraic regime

Semi-infinite visited domain + Surface and volume of visited domain are fractal: -> Algebraic decay

 $F_n(\tau) \propto \tau^{-2}$

Distribution F_n of the time between visits

Early-time algebraic Intermediate-time stretched exponential regime regime

Semi-infinite visited domain + Surface and volume of visited domain are fractal: -> Algebraic decay Exponential distribution on the volume of largest fully visited ball + exponential exit time of ball: -> Stretched exponential

$$t_n = \sqrt{n}$$

 $F_n(\tau) \propto \tau^{-2} \qquad \propto \exp\left[-\text{const.}\sqrt{\tau/\sqrt{n}}\right]$

Distribution F_n of the time between visits

Numerical check & Universality

Numerical check & Universality

Generalisation to any Markovian process in any medium: Hypercubic lattices, Lévy flights, Sierpinski lattice, percolation clusters, persistent random walks (and even some non-Markovian)

	t_n	T_n	$1 \ll \tau \ll t_n$	$t_n \ll \tau \ll T_n$	$T_n \ll \tau$
[recurrent]	$n^{1/\mu}$	$n^{1/\mu}$	$\tau^{-(1+\mu)} = \tau^{-(2-\theta)}$		
[marginal]	\sqrt{n}	$n^{3/2}$		$\exp\left[-\operatorname{const}\left(\frac{\tau}{t}\right)^{\mu/(1+\mu)}\right]$	$\exp\left[-\operatorname{const}\tau/n^{1/\mu} ight]$
[transient]	1	$n^{(\mu+1)/\mu}$		$\left[\begin{array}{c} \text{const}\left(1/t_{n}\right) \\ \end{array} \right]$	